GCSE Mathematics

 Practice Tests: Set 10

 Practice Tests: Set 10}

Paper 1H (Non-calculator)

Time: 1 hour 30 minutes

You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.

- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions.
 Write your answers in the spaces provided.
 You must write down all the stages in your working.

1
(a) Write 5.7×10^{6} as an ordinary number.
\qquad
(b) Write 0.004 in standard form.
\qquad
(a) Simplify $e^{9} \div e^{5}$
\qquad
(b) Simplify $\left(y^{2}\right)^{8}$
(c) Expand and simplify $(x+9)(x-2)$
(d) Factorise fully $16 c^{4} p^{2}+20 c p^{3}$
(a) Complete the table of values for $y=x^{2}-3 x-1$

x	-2	-1	0	1	2	3	4
y			-1		-3		3

(2)
(b) On the grid, draw the graph of $y=x^{2}-3 x-1$ for all values of x from -2 to 4

(2)
(Total for Question 3 is 4 marks)

4 Show that $4 \frac{2}{3} \div 1 \frac{1}{9}=4 \frac{1}{5}$

5 In group \mathbf{C}, there are 6 girls and 8 boys.
In group \mathbf{D}, there are 3 girls and 7 boys.
A team is made by picking at random one child from group \mathbf{C} and one child from group \mathbf{D}.
(a) Complete the probability tree diagram.

(b) Work out the probability that there are two boys in the team.

6 Use ruler and compasses to construct the perpendicular bisector of the line $D E$. You must show all your construction lines.

D E

$A=\{2,3,5,7\}$
$B=\{4,6,8,10\}$
(a) Explain why $A \cap B$ has no elemnts.
\qquad
\qquad
\qquad
$x \in \mathscr{E}$ and $x \notin A \cup B$
(b) Write down the two possible values of x.

Set C is such that
$A \cup B \cup C=\mathscr{E}$
$A \cap C=\{2\}$
$B \cap C^{\prime}=\{4,6,10\}$
(c) List all the members of set C.

8 The diagram shows a shape made from a right-angled triangle and a semicircle.

$A C$ is the diameter of the semicircle.
$B A=B C=6 \mathrm{~cm}$
Angle $A B C=90^{\circ}$
Work out the area of the shape.
Give your answer correct to 1 decimal place.
cm^{2}

9 The table gives information about the heights of some trees.

Height (\boldsymbol{h} metres)	Frequency
$0<h \leq 20$	15
$20<h \leq 35$	48
$35<h \leq 40$	21
$40<h \leq 50$	16

On the grid, draw a histogram for this information.

(Total for Question 9 is $\mathbf{3}$ marks)
(a) Factorise $2 x^{2}-7 x+6$
\qquad
(b) Solve $\frac{4 m+9}{3}=7-2 m$

Show clear algebraic working.
$m=$ \qquad
(c) Write $\frac{\sqrt[4]{y}}{y}$ in the form y^{b} where b is a fraction.
$11 \mathscr{E}=\{$ positive integers less than 20$\}$
$A=\{x: x<12\}$
$B=\{x: 7 \leq x<16\}$

List the members of $A \cap B$

12 Becky has a biased 6-sided dice.
The table gives information about the probability that, when the dice is thrown, it will land on each number.

Number	1	2	3	4	5	6
Probability	$2 x$	0.18	$2 x$	$3 x$	0.26	x

Becky is going to throw the dice 200 times.
Work out an estimate for the number of times that the dice will land on an even number.

13 Make x the subject of the formula $y=\sqrt{\frac{3 x-2}{x+1}}$
$C=b-a$
$a=6$ correct to the nearest integer.
$b=15$ correct to the nearest 5 .
Work out the upper bound for the value of C
Show your working clearly.

15 Use algebra to show that the recurring decimal $0.2 \dot{5} \dot{4}=\frac{14}{55}$

16 Show that $\frac{4+\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a+b \sqrt{ } 2$, where a and b are integers. Show each stage of your working clearly and give the value of a and the value of b.

17 The graph of $y=\sin x^{\circ}$ for $0 \leq x \leq 360$ is drawn on the grid.

(a) On the grid, draw the graph of $y=2 \sin (x+30)^{\circ}$ for $0 \leq x \leq 360$
(b) (i) Write $x^{2}-6 x+10$ in the form $(x-a)^{2}+b$ where a and b are integers.
(ii) Hence, describe fully the single transformation that maps the curve with equation $y=x^{2}$ onto the curve with equation $y=x^{2}-6 x+10$
\qquad
\qquad

18 Simplify fully $\frac{6 x^{3}+13 x^{2}-5 x}{4 x^{2}-25}$
$19 A B C D$ is a kite with $A B=A D$ and $C B=C D$.
B is the point with coordinates $(10,19)$
D is the point with coordinates $(2,7)$
Find an equation of the line $A C$.
Give your answer in the form $p y+q x=r$ where p, q and r are integers.
$A=2^{n} \times 3 \times 5^{m}$
Write $8 A$ as a product of powers of its prime factors.

21 The function f is such that $\mathrm{f}(x)=3 x-2$
(a) Find f (5)

The function g is such that $\mathrm{g}(x)=2 x^{2}-20 x+9 \quad$ where $x \geqslant 5$
(b) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}(x)=\ldots$

$$
\mathrm{g}^{-1}(x)=.
$$

\qquad

BLANK PAGE

